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A redex Rin a lambda-term M is called needed if in every reduction of M to nor-
mal form (some residual of) R is contracted. Among others the following results are
proved: 1. R is needed in M iff R is contracted in the leftmost reduction path of M.
2.Let A:My— M, > M,— .. reduce redexes R,;:M,—» M, ,, and have the
property that Vi.3j>i.R, is needed in M,. Then £ is normalising, ie., if M, has a
normal form, then .# is finite and terminates at that normal form. 3. Neededness is
an undecidable property, but has several efficiently decidable approximations,
various versions of the so-called spine redexes. € 1987 Academic Press, Inc.

1. INTRODUCTION

A number of practical programming languages are based on some
sugared form of the lambda calculus. Early examples are LISP, McCarthy
etal (1961) and ISWIM, Landin (1966). More recent exemplars include
ML (Gordon et al, 1981), Miranda (Turner, 1985), and HOPE (Burstall
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et al.. 1980). We use the term lambda language to cover these and similar
languages.

Classical implementations of a lambda language have adopted an
applicative order evaluation strategy, as embodied for example in the
original SECD machine (Landin, 1964). It is well known that this strategy
is not normalising for all lambda terms. It is also well known that the
leftmost reduction strategy is normalising. However, until graph reduction
was introduced by Wadsworth (1971) the leftmost strategy was not con-
sidered practicable.

The adoption of a normalising implementation of lambda languages has
a number of advantages, of which the ability to specify data structures of
unbounded size is most notable. Turner (1979, 1985) has argued the case
for normalising implementations in a number of papers.

Recent advances in compiling techniques have led to normalising
implementations of lambda languages on sequential machines which rival
in performance terms applicative order implementations, e.g., Augustsson
(1984). By taking advantage of the side-effect-free nature of lambda
languages (at least in benign incarnations) it may be possible to achieve
further improvements in performance by developing appropriate parallel
architectures.

However, the best-known normalising strategy for the lambda calculus is
the leftmost strategy, and this is sequential in the sense that identifying
the “next” leftmost redex cannot in general be achieved without at least
identifying the current leftmost redex. Equally, at least some of the
identification work can be done by a compiler: recent work on strictness
analysis, such as, Mycroft (1981), has exploited this observation.

The fundamental notion underlying this paper is that in every lambda
term not in normal form there are a number of needed redexes. A redex is
said to be needed in a term in a term M if R has to be contracted (sooner
or later) when reducing M to normal form. It will be shown that these
redexes can be reduced in any order, or in parallel, without risking
unnecessary nontermination. We will present efficient algorithms for iden-
tifying sets of needed redexes in a term. The most general concept of
neededness is undecidable, as we show in Theorem 3.12. However, a family
of algorithms can be identified which deliver increasingly better (but
increasingly costly) approximations to the needed set. All the algorithms
offered identify redexes which can be contracted safely, i.e., secure in the
knowledge that such contraction will reduce the length of a leftmost reduc-
tion sequence to normal form by at least 1.

In Berry and Lévy (1979) and also in Lévy (1980) certain families of
redexes are identified in order to obtain optimisations for some classes of
reduction systems.

The various algorithms for detecting needed redexes are comparable to
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the so-called abstract interpretations of terms, see Burn et al. (1986). For
example, in the simplest of our algorithms the term

(Ax.(Ay.yPQ)R)S

is mapped to
(Ax.(Ay.yL1l)Ll)l,

concluding that the two remaining redexes are needed in the original term.

Just which of the defined algorithms is appropriate for a given implemen-
tation is technology and application dependent. Our contribution is to offer
a range of choices to the implementor which frees him from the sharp dis-
tinction between applicative and normal order strategies, which currently
forces him to either accept wholesale the inefficiency risks associated with
normal order, or to buy the known efficiency of applicative order at the
cost of losing normalising properties for his implementation.

The relation with strictness analysis is as follows. There is a sharper
notion of neededness: a redex R is head-needed in a term M if R has to be
contracted in any reduction to head normal form. For example R in Ax. Rx
is needed and head-needed, but in ix.xR only needed. This notion of
head-neededness is essentially the same as that of strictness, albeit that
head-neededness refers to the argument whereas strictness refers to the
function: we have for all redexes R and all contexts C[ 7],

R is head-needed in C[R] < C[ ] is strict in its argument [ ].

See Section 5 for further discussion on strictness.

Plan of the paper. 1In Section 2 we introduce the concepts and ter-
minology necessary to make this paper self-contained. Section 3 contains
the major new theoretical concepts and results: the main result in this sec-
tion is that any strategy which eventually removes all needed redexes in a
term is normalising. Section 4 develops some practical algorithms for iden-
tifying sets of needed redexes in a term. Section 5 offers some concluding
remarks on strictness analysis, sequentiality, and extensions of i-calculus.
The Appendix discusses the method of Lévy-labelled A-calculus, which can
be used to provide alternative proofs of some of our results.

2. PRELIMINARIES
In this paper we will use notation and terminology of Barendregt (1984).

However, in order to make the paper practically self-contained, we will
introduce the relevant concepts and notations in the present section. Also
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some specific preparations for the sequel are included, in the form of
Propositions 2.6-2.9.

2.1. DerINITIONS.  The set of A-zerms, notation A, is defined inductively
by
(@) x,pzo..ed;
(b) M. NeA=(MN)e A4;
(c) MeAd=(ix.M)eA.

If in (c) the proviso xe FV(M) is added, we get the set of AI-rerms. Here
FV(M) is the set of free variables of M.

A term of the form (MN) is an application (of M to N). M is the rator
and N is the rand. A term (Ax.M) is an abstraction, x is its bound variable,
and M is its body.

In applications the usual bracket convention of “association to the left”
is employed; also outermost brackets are omitted. Repeated abstractions
like (Ax.(A).(Az.M))) are written as Axyz. M.

We use “=" to indicate syntactical identity of terms, reserving “=" for
the relation of reduction, which we will now define.

A term R = (Ax.4)B is called a redex. Given such a term,
R'=A[x:= B] denotes the result of substituting B for the free occurrences
of xin 4. R"is called the contractum of R. A term not containing redexes is
a normal form (or: in normal form). The passage from a redex to its con-
tractum R — R’ is called a contraction. One step (B-)reduction is defined by
C[R] - C[R'], where R — R’ is a redex contraction and C[ ] is a context
with one hole, i.e., a i-term with one occurrence of a hole [ J. C[M]is the
result of substituting M for [ ] in C[ ]. The subterm relation sub is
defined by

Msub N N=C[M] for some C[ 1.

When stating that M is a subterm of N, in this paper we will refer always
to some specific occurrence of M in N.

If we want to display which redex R is contracted in the reduction step
M — N, we write R: M — N. Again here, we refer to a specific occurrence of
R in M. The transitive reflexive closure of the one step reduction relation
— 1 denoted by —. Reduction sequences (or reductions, for short)
MO—> M, - M,— -.. will be denoted by #, %, ... They may be finite or
mﬁnilq Although it is an abuse of notation, we will sometimes write a
reduction #: My—> M, — - — M, as @: My —» M, still bearing in mind
that we refer to a specific reduction from Myto M,

The equivalence relation generated by — is called convertion and written
as "=." It should be distinguished from =, syntactical equality.
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Leftmost Reductions and Head Reductions

2.2. DerINITIONS.  If NV is an abstraction term Ax. A4 we call the prefix Ax
the abstractor of N. Likewise if R is a redex (4x.A4)B the abstractor of R is
Ax. If M is not a normal form, the leftmost redex of M is that redex whose
abstractor is to the left of the abstractor of every other redex in M.
A leftmost reduction is one in which each contracted redex is leftmost.
A leftmost reduction step is denoted by — .

The leftmost redex R is a nonnormal form M is called the head redex if
its abstractor is only preceded (in the left to right order of symbols) by
abstractors of abstraction terms (not redexes). In particular, the abstractor
of the head redex is not preceded by a variable. Thus in M= Ax.xR,
where R is a redex, R is the leftmost redex but not the head redex; M has
no head redex. On the other hand, R is the head redex of Ax.RABC. A
term is in head normal form if it has no head redex. The set of head normal
forms can be defined as follows: for any terms M,,.., M,, the term
AX|..x,,.yM ..M, is a head normal form. Here n, m >0. A head reduction
is one in which only head redexes are contracted. This is all standard
terminology (apart from “abstractor™); the following is not.

2.3. DEFINITION. The active components of M are the maximal subterms
of M which are not in head normal form.

Here “maximal” refers to the subterm ordering; so the active components
are mutually disjoint. If a term is not in head normal form, it has one
active component, namely itself. A normal form has no active components.
The set of active components of Ax,..x,. yN,.. N, is the union of the sets
of active components of N, ..., N,. The word “active” refers to the fact that
the active components are embedded in a context which is “frozen,” ie. a
normal form when the holes [ ] are viewed as variables. (This frozen
context of M is the trivial context [ ] if M is not a head normal form.)

2.4. DEFINITIONS.  If N is a subterm of M, the descendants of N after a
reduction step M — M’ are those subterms in M’ which can be “traced
back™ to N in M, in the following sense. If N = x, the notion is clear. If NV is
an abstraction term (Ax.A4) or an application (4B), we look when tracing
to the outermost pair of brackets of N. (For a more precise definition using
labels or underlining see Klop, 1980 or Barendregt, 1984.) Our stipulation
that the “identity” of the outermost bracket pair determines the descen-
dants, entails that the contractum R’ of the redex R in M is not a descen-
dant of R after the reduction step R: M — M’ (since in this redex contrac-
tion the original outermost pair of brackets of R vanishes). Decendants of
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redexes are also called residuals. Note that by the previous remark residuals
of a redex are again redexes. The notion of descendants or residuals after
one reduction step extends by transitivity to the notion of descendants or
residuals after a finite reduction sequence 4.

If #: M — N and &: M —> L are two “diverging” reductions, the well-
known Church-Rosser theorem states that ‘“converging” reductions
AL — P and &¥': N — P can be found. (In another well-known ter-
minology, A-calculus is said to be confluent.) A stronger version of this
theorem asserts that these converging reductions can be found in a
canonical way, by adding “elementary reduction diagrams” as suggested in
Fig. 1.

The reduction diagram originating in this way is called D(%, &), and in
Klop (1980) or Barendregt (1984) it is proved that it closes; i.e., the con-
struction terminates and yields reductions #’ and &’ as desired. We write
R =R/% and call #' the projection of # by &. Elementary reduction
diagrams are obtained as follows: if R: M —» N and S: M — L are two
diverging reduction steps, converging reductions (making the elementary
diagram complete) consist of contracting the residuals of R after S: M — L,
resp. the residuals of S after R: M — N. In case one (or both) of these sets
of residuals is empty, we introduce “empty” reductions as, e.g., in the
elementary diagram shown in Fig. 2 (where I=/x.x).

Letting R stand also for the reduction sequence R: M — N which reduces
just R, then given any reduction #: M —» L, the parallel moves lemma
asserts that the projection R/Z consists of the contraction of all residuals of
R after #.

It is important to note that in general the residuals in P of redex R in M
after a reduction M — P depend on the actual reduction from M to P.
However, this is not so if M and P are left-upper corner and right-lower
corner, respectively, of an elementary reduction diagram. As a con-
sequence, this implies the following.

Ce— X
¢ <
<
¢ Ye
 —c—Ye
- -
v

R

FIGURE 1
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FIGURE 2

2.5. PROPOSITION. Let #:M — N and &: M — M'. Consider the
reduction diagram of Fig. 3. Let R sub M be a redex. Then the residuals of R

in N' are the same with respect to the two reduction paths R x (¥/R) and
F * (RIS ).

Proof. The property holds for elementary reduction diagrams and
therefore also for reduction diagrams. See Barendregt (1984) for more
details.

In the sequel we will need the following fact.

2.6. PROPOSITION. Consider the situation as in Fig. 3. Let R sub M be a
redex none of whose residuals is contracted in ®. Let R’ sub M’ be a residual
of R after reduction . Then no residual of R’ is contracted in | .

Proof. Suppose that a residual of R’ is contracted in #/¥. Since in
#/% the only redexes which are contracted are residuals of redexes
contracted in #, it follows by Proposition 2.5 that a residual of R in a
term of # is contracted—contradiction. (For an alternative proof see the
Appendix.) J

We will need the following facts about reduction diagrams and the
phenomenon of “redex creation.” We say that redex S in M’ is created by
the step R: M — M’ if S is not a residual of any redex in M. Facts like the
Lemma 2.7(ii) are a good illustration of the beneficial use of Lévy’s labels
expounded in the Appendix, which speeds up otherwise very tedious case
verifications.

27. LemMa. Let M —,, N and R: M — M.

M———R N
SL S/R
M >N

R/8

FIGURE 3
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FIGURE 4

(1) If R is not leftmost, then a common reduct of N and M’ can be
found by contracting the leftmost redex in M'. See Fig. 4.

(i)  Moreover, if S sub M’ is a redex and S" sub N' is a residual of S in
N’ via the contraction M' —, N', then

S is created in R: M — M' = S is created in N - N’.

(i) If R is arbitrary, then we have the elementary diagram of Fig. 5,
where M' — .. N' denotes either the leftmost step or an empty step (in
which case M'=N'). Moreover, M’ —.._ N' is the empty step iff R is the
leftmost redex.

Proof. (1) Routine. See, for example, Lemma 13.2.5 in Barendregt
(1984).

(it) By distinguishing some cases. (For an alternative proof see the
Appendix.)

(iii) Immediate by (i). f§

2.8. PROPOSITION. (i) Let M —,, N and M — M'. Then the reduction
diagram looks like Fig. 6.

(i) Let M -, N and M — M'. Then the reduction diagram looks like
Fig.’l. Moreover, M' = N' iff the reduction M' - M' contracts a residual of
the leftmost redex in M.

Proof. (i) By Lemma 2.7(iii) we can make a diagram chase as in Fig. §
and the result follows.

(i1) Again by Lemma 2.7(iii) and a simple diagram chase. |

3. NEEDED REDUCTION

3.1. DeFINITION. Let R be a redex in M.
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(i) R is needed in M (or just “needed” when the context makes clear
which M is intended) if every reduction sequence of M to normal form
reduces some residual of R.

(i) R is head-needed if every reduction sequence of M to head
normal form reduces some residual of R.

(ii1) A reduction sequence is (head-)needed if every reduction step in
the sequence contracts a (head-)needed redex.

3.2. ExampLE. Consider Axy.Ix(Ky(Iy)). Then in this term /x is needed
and head-needed, Ky(Iy) is needed but not head-needed and Iy is neither
needed nor head-needed,

A head-needed redex is automatically needed since every reduction to
normal form contains a reduction to head-normal form. If there is no
reduction sequence to (head-)normal form, then every redex is (head-)-
needed. Each term M not in normal form has at least one needed redex, the
leftmost redex. The proof requires a routine argument which we omit.
Similarly the head-redex of a term (if there is one) is always head-needed.

3.3. DEFINITION. (i) Consider a reduction sequence
A My—->M,— - > M,.

Let R be a redex in M, such that no residual of R is contracted in # and
such that M, contains no residuals of R. Then we say that redex R is
erased in A.

(ii) Redex R in M is erasable if there is a reduction sequence #
beginning with M in which R is erased.

The following facts, whose proofs are immediate, give a first and simple
characterisation of the needed redexes in a term, and provide an easy
example of needed redexes.

3.4. PROPOSITION. (i) Let M have a normal form. Then for any redex R
in M we have R is needed in M <> R is not erasable in M.

(il)  The leftmost redex in any term not in normal form is not erasable,
hence is needed. |

Note that the restriction to terms with normal form in Proposition 3.4(i)
is necessary: e.g., in M= Q(Ax.I)R), where Q = (Jx.xx)(Ax.xx) and R is
some redex; R is erasable but by Definition 3.1 is also needed, as M does
not have a normal form.

A consequence of Proposition 3.4(i) is that in the Al-calculus, where
erasure of redexes is impossible, every redex is needed.
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We will now investigate how the properties of neededness and
nonneededness propagate along the lines of descendants (or residuals)
of a redex in M, in some reduction sequence of M. As one may expect.
nonneededness is a persistent property.

3.5. THEOREM. Let M —> M’. Let S be redex in M and S’ be a residual
of S in M'. Then

(1) S is not needed=-S' is not needed:

(it) S is not head-needed = S’ is not head-needed.

Equivalently

S" is (head-)needed = S is ( head-)needed.

Proof. (1) Suppose S is not needed. Then there exists a reduction
sequence &: M —> N to normal form N in which no residual of S is
reduced. Let .’ be the projection of & over M — M'. See Fig. 9. In every
reduction step in %’ a redex is contracted which is a residual of a redex
contracted in . Since % reduces no residuals of S it follows by
Proposition 2.6 that no residual of S’ is contracted in &". Hence §" is not
needed.

(i1) Similarly. §

We now consider how (head-)neededness propagates. If R is needed in
M, and R has just one residual R" in M’ by reduction of some other redex
in M, then it follows immediately from Definition 3.1 that R’ is needed.
When R has more than one residual, it is easy to see that it is possible that
not all of them are needed. (Consider, e.g., (Ax.x(KIx))R.) However, we do
expect that at least one residual is needed. The proof of this fact is not
obvious. This is because if R has, say, two residuals R, and R, in M, one
can imagine that every reduction sequence of M’ to normal form might
reduce a residual of R, or of R,, but with some of those sequences reducing
only residuals of R,, and others reducing only residuals of R,. This dpes
not happen. We will obtain this fact in Proposition 3.7 as an immediate
consequence of another characterisation of needed redexes, which says that

S subM——S N

1]

S' sub M'-———S—,——'—”N

FIGURE 9
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for neededness it is sufficient to look only at the leftmost (or “normal,” as it
is also called) reduction sequence, instead of looking at all reduction
sequences of a term to normal form.

3.6. THEOREM. Let R be a redex in M.

(i) Let &M —> N be a longest possible leftmost reduction starting
with M. Then N is the normal form of M and

R is needed <> some residual of R is contracted in £.

(ii) Let # : M —> N be a longest possible head-reduction starting with
M. Then N is a head-normal form of M and

R is head-needed <> some residual of R is contracted in .

Proof. (i) (=) By the definition of neededness. (<=) Leftmost redexes
are needed. If some residual of R is a leftmost redex, then by Theorem 3.5,
also R is needed.

(it) Similarly. §
This result can be reformulated as follows:

R is (head-)needed iff R is not erased in £ (.#")
iff R has a residual with respect to £ (# ) that is a leftmost redex.

In the sequel ¥ will range over ¥ and .#.

3.7. PROPOSITION.  Suppose M has a (head-)normal form, and R is a
(head- )needed redex of M. Suppose ¥: M — N is a reduction sequence
which does not reduce any residual of R. Then R has a (head-)needed
residual in N.

Proof. Let : N — N, be the leftmost (head-)reduction sequence of N
to (head-)normal form. Because R is (head-)needed in M, some residual R,
of R must be reduced in & * %. Since . reduces no residuals of R, the
redex R, must descend from some residual in N of R,, with respect to .
Then R, is (head-)needed in N, by Theorem 3.6.

3.8. PROPOSITION. If R: M — M’, Q is a redex of M’ created by R, and Q
is (head-)needed, then R is (head-)needed.

Proof. We will prove this for the case of head-neededness. The case of
neededness is similar.

If M has no head-normal form, then every redex in M is (trivially) head-
needed, and the theorem holds.
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Otherwise, let 4: M — N be the head reduction path to head normal
form. Let R: M — M’, and let Q be a redex of M' created by R. We will
prove that if R is not head-needed, then neither is Q.

We proceed by induction on the length of 4. If ¢ is the empty sequence,
then M is already in head normal form. Therefore M’ is also in head
normal form. No redexes in M’ are head-needed, and the theorem holds.

Otherwise, ¥ = G.%', where G is the leftmost redex of M. We begin by
establishing some properties of the diagram D(R, %) shown in Fig. 10.

By Theorem 3.6, G is head-needed; by hypothesis R is not. Therefore R is
not the leftmost redex of M. Since R is not head-needed, by Theorem 3.5
none of its residuals is head-needed. Therefore every vertical reduction in
Fig. 10 is nonhead-needed. By applying Lemma 2.7(i) throughout the
diagram, we find that in every elementary sub-diagram, the horizontal sides
each consist of a single leftmost reduction. Thus each reduction sequence
G/ (R,..R) (0<i<n) is the same length as ¥’, which is shorter than 9.
Since N is in head normal form, so is every term occurring down the right-
hand side of Fig. 10, and each sequence %'/(R,.. R;,) (0<i<n)is a leftmost
reduction to head normal form.

Now we can show that Q is not head-needed. To show this, it is enough
to show that Q is not reduced in G/R, and no residual of Q is head-needed
in P

R creates Q in M’, and R is not leftmost, so @ cannot be leftmost.
Therefore Q is not G/R.

Let Q' be a residual of Q in P'. By Lemma 2.7(ii) applied to the left-hand
box of Fig. 10, Q' is created by R/G. Let R/G=R,..R,. Then some R,
creates a redex Q" such that Q' is a residual of Q" by R;, ..R,. We
cstablished above that R, is not a head-needed redex, and that
9')(R,..R, ,)is a reduction to head normal form which is shorter than 4.
Therefore induction applies, showing that Q" is not head-needed. Q' is a
residual of Q”, so by Theorem 3.5 it is also not head-needed.

A useful property is that “(head-)neededness is preserved upwards,” with
respect to the relation “subterm of.”

M—S »p—G  ppy

R,.R,

¥ SRR

R R;

A
\
v GY/R.R) ]

Ria-Rog ¥

Qsub M= P 5IR1G) N

FIGURe 10
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39. LemMa. Let R sub S sub M, with R and S redexes. Then

R is (head-)needed in M = S is (head-)needed in M.

Proof. 1f M has no (head-)normal form then this is trivial. Otherwise,
let 4: M —> N be the leftmost (head-)reduction of M to its (head-)normal
form. Suppose that S is not (head-)needed in M in order to show that R is
not (head-)needed in M. Then no residual of S is contracted in 4. The
redex S is to the left of R and the same holds for the respective residuals. It
follows that no residual of R is contracted in 4. Therefore R is not (head-)-
needed by Theorem 3.5. |

3.10. PROPOSITION. let R: M — N and let S be a (head-)needed redex
in M. Suppose that R is not (head-)needed. Then S has a unique residual S'
in N. Moreover, S is (head-)needed.

Proof. Suppose that the (head-)needed redex S is multiplied by con-
tracting R, then R is a superredex of S and therefore by Lemma 3.9 also R
would be (head-)needed, contradiction. Moreover, since S is (head-)-
needed, it is different from R and cannot be erased by reducing R. It
follows that S has a unique residual S’. This S’ is also (head-)needed by
Proposition 3.7. §

3.11. LEMMA. I_fF=/; F’, then

R (head-)needed in FR=> R (head-)needed in F'R.

Proof. By the Church-Rosser theorem one has F —» F” and F' — F”
for some F”. Then FR — F'R and F'R —» F"R. Suppose R is (head-)-
needed in FR. Then also R is (head-)needed in F”R by Proposition 3.7 and
hence in F'R by Theorem 3.5. |

Intuitively, (head-)neededness is related closely to termination. Con-
sequently, the following result comes as no great surprise.

3.12. THEOREM. [t is undecidable whether a redex in some term is
( head- )needed.

Proof. Scott’s theorem (see Barendregt, 1984, 6.6.2) states: “Let X be a
set of lambda terms which is closed under conversion. Moreover, let X not
be the whole set of lambda terms nor be empty. Then X is not recursive.”
Now consider the set

X ={F|R is (head-)needed in FR}.
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Then X satisfies the criteria of Scott’s theorem, by Lemma 3.11. Hence it is
not decidable whether R is (head-)needed in FR. From this it follows that
it is in general not decidable whether a redex in some term is (head-)-
needed. f

However, just as we can determine that certain programs terminate we
can hope to identify at least some (head-)needed redexes in some lambda
terms. Theorem 3.12 does not say we cannot do anything; it just tells us
that perfection is not possible.

We will now proceed to give a surprisingly simple characterisation of the
(head-)needed redexes in M in terms of their behaviour with respect to the
leftmost (head-)reduction sequence of M to its (head) normal form. The
following definition and treatment are suggested by the analogous treat-
ment in Huet and Lévy (1979).

3.13. DEFINITION. (i) Let M be a term. Then the norm of M, notation
| M]], is the length (in number of reduction steps) of the leftmost reduction
sequence of M to normal form if this exists, and “infinite” otherwise.

(i) Similarly, the head-norm of M, notation | M|, is the length of
the head-reduction sequance of M to head normal form, if this exists, and
“infinite” otherwise.

Note that [|M|" < | M].

3.14. Notation. —, denotes the contraction of a needed redex and — _ |
the contraction of a nonneeded redex. Similarly —,, denotes the contrac-
tion of a head-needed redex and — _,, of a redex that is not head-needed.
For each such reduction relation —,, its transitive reflexive closure is
denoted by —,.

3.15. THEOREM. (i) Let M have normal form. Then
M —» N=|M]| > |N|;

M —> N=||M| =Nl
(i) Let M have a head-normal form. Then

M — N=|M|">|N|"

M— N= | M|"=|N|"

That is, (head-)needed reduction is (head-)norm-decreasing; non-(head-)-
needed reduction is ( head-)norm-preserving.

643/75/3-2
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Proof. (i) Let R sub M be arbitrary and consider the leftmost reduc-
tion sequence &¥: M =M, - M, to normal form M,. Let R: M - N=N,,.
By Proposition 2.8 we can erect the diagram in Fig. 11, where ¥’ is again
leftmost. Hence in any case |M|| = || N].

If R is needed, at least one of its residuals is contracted in .. Say this is
in the step M; =, M, ,. Since M; - N, contracts all the residuals of R,
it also contracts the leftmost redex in M,. Therefore by Proposition 2.8 the
reduction sequence N; — .- N,,, is the empty step. Hence || M| > ||N]|.

If R is not needed, then by Theorem 3.6 no residual of R is contracted in
& . Therefore again by Proposition 2.9 each step M, =, M,,, in ¥ gives
exactly one leftmost step N; =, N;,, in #’. Thus ¥ and %' have exactly
the same length, and | M| = || N}.

(ii) Similarly. §
The next theorem collects all our equivalent characterisations of (head-)-

neededness.

3.16. THEOREM (equivalent characterisations of (head-)neededness).
(1) Let M have normal form N, and let R in M be a redex. Let & be the
leftmost reduction sequence from M to N. Then

R is needed in M < R is not erasable in M
<> R has a residual contracted in &
<> Ris not erased in ¥
<> R is norm-decreasing.

(it) Let M have a head-normal form, and let R in M be a redex. Let
H be the maximal leftmost head-reduction sequence starting from M. Then

R is head-needed in M < R has a residual contracted in A

<> R is head-norm-decreasing. |

L
Im
My—— > M—>M,——> — M
R
Ny N———> — N,— —> N
Im= Im = -3 Im= k
I

FIGURE 11
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3.17. PROPOSITION.  Let M have a (head-)normal form. Then the leftmost
(head-)reduction sequence of M has maximal length among the (head-)-
needed reduction sequences to (head-)normal form. ( There may of course be
longer sequences, but these include redexes that are not (head-)needed.)

Proof. Every (head-)needed reduction reduces the (head-)norm by at
least one. Therefore a (head-)needed reduction sequence from M to
(head-)normal form can have length no more than |M||'"®. But |M|™ is
the length of the leftmost (head-)reduction sequence to (head-)normal
form. J

This proposition implies that in the Al-calculus the leftmost reduction
sequence of M has maximal length among all reduction sequences. This
implies the well-known fact for the A/-calculus, that if M has a normal
form, then all reductions starting with M terminate.

3.18. LEMMA. (i) Let R:M — N and S: N— L, where R is nonneeded
and S is needed. Then there exist a term N', a needed redex S': M — N', and
a sequence N' — L of nonneeded reduction steps. See Fig. 12.

(i)  An analogous statement holds for head-neededness.

Proof. (i) By Proposition 3.8 nonneeded redexes never create needed
redexes, so S must be a residual by R of some redex S’ in M. By
Proposition 3.10, S must be the only residual of S’. Therefore we can make
the above reduction diagram. Hence by Theorem 3.5, the redexes reduced
in N — L are nonneeded. That S’ is needed follows also by 3.5.

(i) Similarly. §

3.19. THEOREM. Let #: M —> N be a reduction sequence. Then there are
sequences M — L and 7 : L —> N such that & is needed, 7 is non-
needed, and # =9 x.7. ("Nonneeded reductions can be postponed.”)
Similarly for nonhead-needed reductions.

Proof. By Lemma 3.18 using some “diagram chasing.” [

The word “needed” refers to the fact that, by definition, some residual of
the needed redex must be contracted in order to each normal form. Now

FIGURE 12
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we will show that reduction of needed redexes is not only necessary, but
also sufficient to reach the normal form. More generally, we will show that
if an arbitrary finite number of nonneeded steps is allowed between needed
steps, the resulting reduction sequence is still sufficient to reach normal
form. That is, “quasi-needed reduction is normalising.”

3.20. DerINITION.  Consider a (finite or infinite) reduction sequence
R=My—> M > M,— ..
with R;: M, » M, .
(i) Z is called a quasi-needed reduction sequence if
Vi.3j>i.R;is needed in M.
(ii) Similarly we define quasi-head-needed.

So the quasi-needed reduction discipline has the nice property that one
is free to perform, between needed reduction steps, an arbitrary finite
reduction sequence.

3.21. THeoreM. (i) Let M have a normal form. Then every quasi-needed
reduction sequence starting with M terminates.

(it)  Similarly, if M has a head-normal form, then every quasi-head-
needed reduction starting with M terminates.

Proof. (i) By Theorem 3.15, needed reductions are norm-decreasing,
while nonneeded reductions are norm-preserving. Hence a quasi-needed
reduction sequence starting from a term with a finite norm (i.e., having a
normal form), must end in a term with norm 0 (i.e,, a normal form).

(i) Similarly.

[t follows that if a term has a (head )-normal form, then a quasi-(head-)-
needed reduction is able to find it (one).

4. SPINE STRATEGIES

As shown in 3.12, neededness of a redex R in M is undecidable in
general. In practical cases we usually work with terms having a (head) nor-
mal form. In these cases we can decide whether R is (head) needed: reduce
M by the leftmost reduction path L to (head) normal form; if (a residual
of) R is reduced in L, then R is (head-)needed, otherwise not. (A leftmost
reduction to head normal form is a head reduction.) This is, however, not a
practical algorithm: it uses unpredictably long look-ahead.
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Practical algorithms for identifying needed redexes should be efficient:
the number of steps required should be bounded by some linear function of
the size of a term. This motivates the various notions of spine redex
introduced below. These come in two groups: various notions of head-spine
redex and spine redex. These are generalisations of the notions of head
redex and leftmost redex, respectively. The redexes belonging to these
families are all needed. Moreover, we will give efficient algorithms to test
whether a redex in a term belongs to one of the classes.

4.1. DerINITION. The set HS(M) of head spine redexes in a lambda-
expression M is defined as

HS(M)= if M is in head normal form
HS(M)={(ly.P)Q} VHS(P) fM=lx,.x,.((Ay.P)Q)R,..R,,,

for some n, m=0.

We will see that there is an efficient algorithm for identifying the head
spine redexes, by computing the head spine of the given term.

4.2. DerINiTION.  For a lambda-expression M we define hs(M); this will
be the same term with some underlining:

I

hs(x) X
hs(ix.P)= Ax.hs(P)
hs(PQ) =hs(P)Q

It is easy to see that a redex R in M is a head spine redex iff the 1 of R is
underlined in hs(M).

4.3. DeFINITION.  Every lambda-expression can be written in the form

M =Ixq. (Ax . (.(Ax,. YP, . )P,)... )Py,

where n> 0, the xq, .., X,,, P, .., P, , | are vectors, i.e., Xq= X, X¢32, -y ELC.
Note that such vectors are not subterms, but lists of subterms. The vectors
Xy, and P, ., may be empty, but the remaining x; and P, are nonempty.
Note that with more parentheses we have

M = (Axg. (A (2%, (VP . )PP ).

The head spine corresponds to the underlined portion of M. The variable
v 1is called the head variable of M. By analogy with the notion of “spine,”
the terms P, are called the ribs of M.
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ExAMPLE. A term with n=2 looks like

AXg.(Ax . (AX5. yP;)P5)P,

and when the vectors are written out, e.g., like

Aayas.(Abybsbs.(Aci¢,. yD,D,)C)B, B,.

In tree notation the term looks like Fig. 13. The thick lines pick out the
head-spine.

Looking at a term M in this way makes it clear that its leftmost reduc-
tion sequence begins by reducing all the head spine redexes, from the out-
ermost inwards. If in a leftmost reduction some rib P, is substituted for the
head variable of M, the head spine of M is extended by the head spine of
P, and the head spine redexes of P,; will have residuals on the spine of the
resulting expression. It follows from the contrapositive formulation of
Theorem 3.6 that all the head spine redexes of P, are needed in M. These
observations provide a basis for a better approximation to neededness than
that offered by head spine redexes.

Aa
!
2
|
Ap
7\
Ap B,
VAN
Aby B
!
!
I
Ap
VAN
Acy (o]
!
2
|
Ap
7\
Ap b,
7\
y b

FIGURE 13
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4.4. DEFINITION. (i) Let M be as above and let P,=P,. P,.. and
X;=X;, X;... Then M has the head spine target P, if y=x, with i>0.
This subterm will be substituted for the head spine variable when nor-
malising M.

(i) M has the polyadic head spine target P, if y=x, with i>0 and
P, exists (ie., P; has at least j elements).

4.5. ExaMpLE. Consider M = (Ax,x,x5.((Ay, y2. (A2, 252524 YW, W5)
Z))Y,Y,Y;)); then
Y=y, = Y is the (polyadic) head spine target;
Y=y, = Y, is the polyadic head spine target;
y=1z, = Z, is the (polyadic) head spine target;
Y=z, = there is no (polyadic) head spine target;
yis free = there is no (polyadic) head spine target.

4.6. DEFINITION. Let M be a term with head spine target N. An exten-
ded head spine redex of M is a head spine redex of M or an extended head
spine redex of N.

Let M be a term with polyadic head spine target N. A polyadic head
spine redex of M is a head spine redex of M or a simple polyadic head
spine redex of N.

Recall that the active components of M are the maximal subterms of M
not in head normal-form. For example, if M =.ix.(iy.P)QR, then M is
the only active component of itself. If M =Ax.yR,..R,,, then the active
components of M are those of R, ..., R,, together.

4.7. DEFINITION. (i) A spine redex of M is a head spine redex of an
active component of M.

(i1) Similarly, extended or polyadic spine redexes are respectively the
extended or polyadic head-spine redexes of an active component in M.

4.8. LemMMa. Let A sub M be an active component. Then

R is head-needed in A = R is needed in M.

Proof. Induction on the length of M. If M is not in head-normal form,
then A =M and the statement is trivial. Otherwise, M = Ax,..x,. v4,..4,,
and A is an active component of say A4,. By the induction hypothesis R is
needed in A4,, hence in M. |
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4.9. THEOREM. (i) Head spine, extended head spine, and polyadic head
spine redexes are all head-needed.

(i1) Spine, extended spine, and polyadic spine redexes are all needed.

Proof. (1) From the definition of head spine redexes it is clear that
these will be contracted on the head reduction path. Hence by 3.6(ii) such
redexes are head-needed. From the definition of extended or polyadic head
spine redexes it also is clear that these will become head redexes; therefore
they are also needed.

(ii) By (i) and Lemma 4.8. §

Figure 14 summarises the relations between the various classes of
redexes.

Now we will turn to the algorithms that detect the various classes of
needed redex. First we give a noncomputable version in order to make the
idea clear.

4.10. DErFINITION.  The selection number of a A-term M, notation Sel(M),
is defined as

Sel(M) = 1 (undefined), if M has no head-normal form;

=0, if M has a head-normal form with
a free head variable;

=, if M has a head-normal form
Ax x, x,M ..M,  i1l.n

Clearly Sel is a partial recursive function on (the codes of) terms.

The selection number is related to the notion of head-neededness. In the
following definition AL stands for the set of lambda terms extended with a
new constant L.

head spine o spine
n n
extended head spine S extended spine
N n

polyadic head spine [ polyadic spine
n n

head-needed c needed

FIGURE 14
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4.11. DEFINITION. The map ¢ >: 4 - A1 is defined as

(x)  =x

(Ax.Py=2x.{P);

(PQY =(PXQ), ifSel(P)=1,
=<P>1, otherwise.

4.12. ExaMPLE. Let

M, =lw.(Axy. yAB)((Lz.w)B);
M,=2w.(Axy.xAB)((Aiz.w)B).

Then

(M y=iw (Axy.yL1)1;
My =Aw. (Axy.xLL)((Az.w)L).

4.13. DEFINITION. Let R be a redex in M.

(i) R is called { )-preserved if the abstractor of R is still present
in {M).

(i1) R is called { »-needed if R is { )-preserved in an active com-
ponent of M.

4.14. PROPOSITION. (i) R is { Y-preserved = R is head-needed.
(1) R is { Y-needed= R is needed.

Proof. (i) By induction on the term M of which R is a subterm. If
M = x, then the result is trivial. If M = Ax. P, then the result follows from
the induction hypothesis. If M = PQ, then there are three subcases:

R=PQ. Then R is head needed.
R sub P. Then

R{ >-preserved => R visible in (M )
= R head-needed in P, by the induction hypothesis
= R head-needed in M.

Rsub Q. Then
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R{ Y-preserved = R visiblein (M) = (P>{Q)> & Sel(P) =

= R visible in (@) & Sel(P) =
= R head-neededin Q & P —», Ax,..x,.x N,..N,
=> R head-needed in PQ = M.

(ii) By (i) and Lemma 4.8. §

The converse does not hold; R in (Ax.xR(Ay. y))(Apg. p) is head-needed,
but not { )-preserved.

Now we will define several computable approximations to Sel: Sel, ,.
These partial recursive functions are computable in the sense that their
domains are recursive. The definition of Sel, is simultaneous with that of
o)

In the following definition T denotes “undefined” and a = b is a—b if
this is not negative and 0 otherwise.

4.15. DEFINITION. (i) < ), is defined by replacing Sel in the definition
of ¢ > by Sel,.

(ii) Sel,(P) = T, for all P.
(ii1) elz( ) =0
12( Q =1
Sel,(2x.P)= 1, if xe FV(CPY,),
=1, otherwise.
(iv) Sels(x) =0;
Sel;(PQ) =Sely(P)—~1, if Sel;(P)# 1,
=1, otherwise;
Sel;(Ax.P)=1, ifxe FV({P)s),
= Sel;(P)+ 1, if x¢ FV({P5)
and Sel;(P) >0,
=0, otherwise.
(v) Sely(x) =0;
Sel,(PQ) =Sel,(P)—~1, if Sel,(P) # 1,
= Sel,(Q)—lengthtail(P), if Sel,(P)=1
and Sel,(Q) > lengthtail(P)
=1, otherwise;
Sely(Ax. P)=1, ifxe FV({P),),
= Sel(P)+ 1, ifx¢ FV({P>,)
and Sel,(P) >0,

i

0, otherwise.
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Here lengthtail( P) is defined by:

if P has as head-normal form Ax,..x,.yQ,..Q, (with n, m>0),
then lengthtail(P) = n, otherwise |

Moreover, we have the property
Sel,(P)=1=>lengthtail(P) is defined.

It follows that Sel, is computable, even although its definition uses
the uncomputable—-more precisely, not always computable—function
lengthtail. We will not prove this fact here as it will follow from a more
precise analysis later on. See Definition 4.22 below.
4.16. DEFINITION. Let R be a redex in M.
(1) Ris { )ypreserved if R is visible in { M >,.
(i1) Ris { Dyrneeded if Ris { ) -preserved in an active component
of M.
4.17. DEFINITION. Let R be a redex in M.

(i) R is called a generalised head spine redex if R is { ,-preserved.

(ii) R is a generalised spine redex if R is a generalised head spine
redex of an active component of M.

It is clear that for the partial functions Sel, we have

Sel = Sel, = Sel; = Sel, 2 Sel |,

Le., the Sel; are successively better approximations of Sel.

In the next proposition 2 denotes Bohm-tree inclusion of A L-terms, that
is M2 N iff M results by replacing some occurrences of L by arbitrary
Al-terms. E.g., Ax.xy24x.xL.

4.18. PROPOSITION.  For all terms M we have
AMY22AMH> 2 M2 M}, =2{(M},.
Proof. By the previous remark. §

ExampLE. Let M =I(K, I((Ax.xI) K (I])))(wI(II)), where K,=/lxy.y
and w= ix.xx. Then
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(My, =111,

(MY, =1(K,LL1)L;

(MY, =K, L((Ax.xL)K,L))L;

(M=K, L((Ax.x 1)K (ID)))((Ax.xL)IL);
(MY =I(K, L((Ax.x 1)K, (I1)))((Ax.xL)I(I])).

4.19. PROPOSITION. (i) R{ Yrpreserved=> R head-needed.
(i) R{ Yrneeded => R needed.

Proof. (i) By Proposition 4.17 it follows that if R is visible in (M},
then also in (M) and therefore { )-preserved. Hence by Proposition 4.14
we are done.

(i) By (i) and Lemma 4.8.

4.20. PROPOSITION. (1) R is a head-spine redex < R is { ) -preserved.
(it} R is a spine redex <> R is { Y -needed.
(iii) R is an extended head spine redex = R is { »,-preserved.
(iv) R is an extended spine redex => R is { ),-needed.
(V) R is a polyadic head spine redex = R is { )i-preserved.
(vi) R is a polyadic spine redex = R is { );-needed.

Proof.  For the statements including “head-" this follows by induction
on the structure of M in which R occurs. The case distinctions are best
made according to the shape of M displayed in Definition 4.3. As a typical
example let us show (v) with M = ((Ax,x,.(Ly, y>.Xx,Z)Y)X )X, and let R
sub M in fact be sub X,. Then

Ris polyadic head spine redex of M
=> R polyadic head-needed in X,
= Rvisible in (X, ), by the induction hypothesis
= Rvisible in (M) ;= ((Ax,x,.(Ay, y5. x5 L)L) L)X, D,
since Sel;((Ax, x,.(Ay, y,.x,Z)Y)X,) = Sels((Ay, y>. X, Z)Y )+ 1+1—1=1.

For the statements without “head-,” the validity foliows from
Lemma 4.8. |

The reverse implications in (iii) and (v) do not hold. Consider, e.g,
M = (Ax.(Ay.yA)x)R. Then R is not an extended (nor polyadic) head spine
redex, although R is visible in My,
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As to the length of the different spine reductions, we can state the follow-
ing simple observation.

4.21. PROPOSITION. All spine reduction sequences of a given term to
normal form have the same length.

Proof. Note that if Ry and R, are two different spine redexes in M, then
R, and R, can neither multiply nor erase each other. Hence we have the
elementary reduction diagram of Fig. 15. Now the statement follows by a
simple diagram chase. [

For extended and polyadic spine reductions this is not true, since, for
example, a polyadic spine redex may be duplicated by a spine redex to its
left.

The corresponding theorem for head reductions would be trivial, since
there is only at most one head redex in any term.

An Algorithm for Detecting Generalised ( Head) Spine Redexes

The definition of Sel, contains an unsatisfactory element, namely the
appeal to lengthtail(M), for which the head-normal form of M must be
determined. It would be better to have a more explicit algorithm to deter-
mine lengthtail(M). Such an algorithm is given by the following definition.
The operation L gives what was called above lengthtail, in those (com-
putable) cases where Sel, needs it. K is an auxiliary function; see
Theorem 4.31 below. K(M), Sel,(M), L(M) are defined simultaneously;
therefore it is convenient to work with triples (K(M), Sel,(M), L(M)),
abbreviated as KSL(M) and varying over N* U {(x, %, x)}. The operation
+ on this set works coordinatewise with the understanding that n + x = x.

422. DEFINITION. (i) KSL(L)= (x, *, *)
(i) KSL(x)=(0,0,0)

(i) KSL(Ax.P) = KSL(P) + (1, 1,0) if xe FV({P),) or
FV({Py,)=, KSL(Ax.P)=KSL(P)+ (1,0, 0) otherwise.

FIGURE 15
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(iv) KSL(PQ)= KSL(P)® KSL(Q), where @ is recursively defined
by

(1) (o, %, %) @ (x, »,2) = (%, *, %)

(2) (0,0,)) @ (x, ¥, 2) =(0,0,/+1)

(3) k+1,0)) @(x,»2) =(k, 0, )

(4) (k+1,1,)) @ (%, *, x) = (%, %, *)

(5) (k+11,)) @(0,0,)) =(k,0,j+ /)

6) (k+1Ln+2, )Y®(x, y, 2) =(k,n+1,})

(7 (k+1,1,0) @K*'+1,0,)) =(k+k+10,))

8) (k+1L1,j+1)® (k' +1,0,/) =k+11,)®k,0))
(9 (k+1,1,0) @K' +1,1,7) =k+k+1,k+1,j)
(10) k+L 1L, j+ 1)@k +1,1,)) = (%, *, *)

(1) k+1,1,0) Sk +1L,n+2,/)y=k+k+1Lk+n+2,))
(12) k+L L, j+ D)@K+, +2, ] )=k+1, 1, )Y@k, n"+1,))

As to the intuition for KSL(M), the following will be proved:

KSL(M)=(k, s, j)= M has a head-normal form of
the form Az,..z,.z,N,..N,.

The reverse implication does not hold; M = (Ax.x/)] has a head-normal
form I, but

KSL(M)=KSL(Ax.xI)@® KSL(I)= (KSL(xI)+ (1, 1,0))® KSL(])
= ((KSL(x)® KSL(I))+ (1,1,0))® KSL(I)
=(((0,0,0)@(1,1,0)) + (1, ,0))@ (1, 1. 0)
=((0,0, 1)+ (1, 1,0))@®(1, 1,0)
=(L,,1)®(1,1,0)
= (%, %, *).

The reason is that the computation of the head-normal form of M uses the
underlined subterm in (Ax.x/)! whereas the definition of ¢ ), (for which
KSL is a subroutine) is such that every vector xP,..P; is replaced by
xL..L (jtimes L;thisis abbreviated as xL1/). One can formulate a restric-
ted A-calculus embodying these restrictions (namely that no information is
visible of a vector xP, ... P; except the head variable and the length j of the
tail) in the calculation of KSL and therefore of ¢ »,, and obtain a precise
characterisation of when KSL(M)= (*, *, *) as follows.



NEEDED REDUCTION AND SPINE STRATEGIES 219

4.23. DEFINITION.  ALl-calculus has as terms the set A1 and as rules
(1) 1LM-L1,
(i) Ax.L —> 1,
(iii) xP,..P;—>xLl/,j=0,
(iv)  (Axpxgex; LYP = Axyx, PLLif k=1, j> 0,
(V) (Ax X X, )P = Axyxex, Ui k=1, j20,n#1.
Note again that the 1/ are not subterms.

These rules generate a reduction relation —. a reflexive-transitive
closure —, and an equality =, just as for ordinary A-calculus. When it is
necessary to distinguish these relations from those of i-calculus, we write
il—M->N, L —M-—> N and AL —M=N.

EXxampLE. In  AL:(Ax.xx)(Ax.xx) = (Ax.xL)(Ax.xL) = (iv.xLl)Ll
- 1l1l—-1.

4.24. PROPOSITION.  AL-calculus is terminating and Church-Rosser. The
normal forms are L and ix,..x,.x, 1’

Proof. Every reduction decreases the length of a term, hence the system
is terminating. The Church-Rosser property follows via Newman’s lemma
(see Proposition 3.1.25 of Barendregt, 1984), since the system is easily
proved to be weakly Church-Rosser. [

425 LEMMA. (i) KSL(L)=(x, * %)
(i) KSL(Ax,..x;.x,L)=(k,n,j), if l<n<k.
(i)  KSL(Ax,..xp.xLl/)=(k, 0, ), if x¢& {x|,0, X, }.
Proof. By the definition. |

4.26. LEMMA. KSL is substitutive. That is, if KSL(E) = KSL(F), then for
any G, KSL(G[y:=E])=KSL(G[y:=F]) (where by the usual variable
convention the substitution automatically renames variables in E to avoid
captures).

Proof. By induction on the structure of G.
(1) G =x. Trivial
(ii) G=/ix.P. Write G*=G[y:= E]. Now
KSL(G%)=KSL(Jx.P¥)+(1,1,0)or (1,0,0)
= KSL(P¥)+(1,1,0)or (1,0,0)
=KSL(P")+(1,1,0)0r (1,0,0) (by the induction hypothesis)
= KSL(G"),
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since x& FV({PE) < xe FV({P"),) because x # y and x is not free in E
or F

(ii) G= PQ. Similar but easier. J

427. LemMa. Let E be a AL-redex without proper subredexes. Let F be
the contractum of E. Then KSL(E)= KSL(F).

Proof. By cases of 1L-reduction, and by induction, firstly on the size of
E, and then (when E is an application) on the size of the rator of E. See
Definitions 4.22 and 4.23.

(i) E=L1M. Then F= L. Now KSL(E)= (% # %)@ KSL(M)=
(%, *, *) = KSL(F).
(i) E=ix.L. Then F= L. Now KSL(E)= (%, *, %)= KSL(F).
(iii) E=xP,..P,. Then F=xL1’. Now KSL(E)= (0,0, j)= KSL(F).
(iv) E=(lx,..x,.x, L/)P. Then F=ix,..x,.PL’ Now

KSL(E)= KSL(Jx,..x;.x, 1/)@® KSL(P)
= (k, 1, j)® KSL(P).
We compute KSL(F) according to the following subsubcases (4), (5),

(7)-(12) corresponding to the definition of @.

(4) KSL(P)=(%,*,*). Then P=1. Now F=lx,..x,.1 1’ and
KSL(F)= (%, %, x) = KSL(FE).

(5) KSL(P)=(0,0,,'). Then P=yl’. Now F=lx,.x,,pLl/l’/
and

KSL(E)=(k, 1, )y® (0,0, j)=(k—1,0, j+ j' )= KSL(F).

(7) KSL(P)=(k'+1,0,/)&j=0. Then P=4dy,..yp,,. vl
Now F=Jx,..x,.P and

KSL(E)=(k, 1,0)® (k' + 1,0, j)=(k+£k',0, j') = KSL(F).

(8) and (12) can be treated simultaneously. KSL(P)= (k' + 1, n', j'),
where n' #1, and k, j>0. P= Ay ..y, .. L/, where if n' >2 then y=y,,
and if n'=0 then y is not equal to any of y,..y,,,. Now
F=Axy.x.PL/. Let G=(dx,..x,.x, L/ ')(PL). Then G — F. From the
definition of @ we have

KSLE)=(k, 1, )@ (K'+ 10", j)=(k, L, j= 1)@ (K, n", j') = KSL(G),

where if n’ =0, then n” =0, and if n’ > 1, then n” =n’— 1. We must prove
KSL(G)= KSL(F). Since P is an abstraction, PL is a redex. Let P’ be the
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4

result of reducing it. It is clear that P1 contains no proper subredexes and
is smaller than E; therefore by the induction hypothesis KSL(P1)=
KSL(P'). By substitutivity of KSL one has KSL(G)= KSL(G’), where
G'=(Ax xex V7P Let F'=Jx,..x,.P'L’"'. Then G'-F and
F— F. Both G" and F' are smaller than E, and are both redexes not
containing subredexes. Therefore by the induction hypothesis KSL(G')=
KSL(F')= KSL(F), and the result is proved.

(9) and (11) can be treated simultaneously. KSL(P)= (k' + 1.
n+1,j)&k>0, j=0. Then P=2yiyeii-Ywir L. Now F= AXyu Xy,
P=Axy Xy Vi Ve v1- Vw1 L7, and we have

KSLIE)= (K, LOY® (K" + L.n'+ 1, /)= (k+ k', k+n" +1, j') = KSL(F).

(10) KSL(P)=(k'+ 1,1, )&k, j>0. Then P=iy, ..y, ,,. v, L .
Now F=Ax,..x,.PLl/:

KSL(E)=(k, 1, )@ (k' + 1, 1, ') = (%, %, *)

KSL(F)=(KSL(P)® KSL(L)®..®KSL(L)) + ..
=K+ 1,1, 7)® (%, %, )@ o ® (%, %, %)) + ...
= (%, % x)+ ..

= (*, *, *)

(v) E=(Axj.xex, L)P&k=1,n#1. Now F=/x,..x..x, L'
KSL(E)= KSL(Ax,..x;.x, L) @® KSL(P)
=(k, n, j)® KSL(P).

We compute KSL(F) according to cases (3) and (6) of the definition of @.

(3) n=0. KSL(E)=(k,n, j)®KSL(P)=(k—1,0, j)= KSL(F)
(6) n>=2  KSL(E)= (k,n,j) ® KSL(P) = (k- 1,n—1,j) =
KSL(F). §
4.28. PROPOSITION.  If AL+ E=F, then KSL(E)=KSL(F). In par-
ticular, KSL(E) = KSL(E™), where E™ is the normal form of E.

Proof. From Lemmas 426 and 427, if AL—E—F, then
KSL(E)= KSL(F). The proposition follows. §

4.29. PROPOSITION. (i) KSL(M)= (k, n,j)<> AL—M —> Ax ..x;.x, 1"
(i) KSL(M)= (%, % %)<l —M > 1.
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Proof. The normal forms of Al are Jx;..x;.x,Ll’ and L. Every
JL-expression has a normal form. Hence the proposition follows from
Lemma 4.25 and Proposition 4.28. §

4.30. PROPOSITION. If AL +—M — Ax,.x;.x,17, then Ar—M —»
IXy Xy X, P).. P;, for some expressions P,..P;.

Proof. All AL-reductions can be mimicked in i. J

4.31. THEOREM. KSL(M)=(k,s,j)=>M has a hnf of the form
Azyzp 2Ny N,

Proof. From Proposition 4.29 and Proposition 4.30. |

5. CONCLUDING REMARKS

We will make some remarks on the relation of the present work with
“strictness analysis” and with the various concepts of “sequentiality.”

Strictness

As the bare essence of “strictness analysis” we understand the following.
Given a domain D of data, including an undefined element 1, and some
space F of functions over D (not necessarily only unary functions) we will
understand “strictness analysis” to designate the endeavour of (1) giving
characterisations of some classes of strict functions from F and (2) giving
computable approximations (that is, subclasses) of some classes of strict
functions from F. Here a unary function f in [F is strict if f(L)= L, mean-
ing that nonzero information output can only be obtained by nonzero
information input. Further, a binary function g in F is strict in both
arguments if g(L, x)= g(x, L)= 1, and likewise for n-ary functions.

In our setting, the data domain D is the set of A-terms modulo equality
as obtained by f-reduction plus the rule M — L for all M without head
normal form. Thus all terms without head normal form are considered to
be meaningless and identified with the undefined element L. In Barendregt
(1984, Chap. 16) this lambda theory is called J#. The space of n-ary
functions F consists of contexts C[ , ..., ] with n (or fewer) holes; here
n>1. We now have the following result, due to H. Mulder (oral com-
munication ).

5.1. PROPOSITION.  For every context C[ ] and every redex R we have:

the unary function associated with C[ ] is strict < R
is head needed in C[R).
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Proof. We show that the negations of both sides are equivalent:

C[Ll]# L < C[Ll]hasa head normal form
< C[L]—» ix,..x,.x;M .. M,

head

< C[R] - Axy.x, . x;MF ..M,

(without reducing R, where M * is the result
of substituting R for L in M)
<> Rnot head needed in C[R].

It follows that

C[ Jisstrictin [ J<>VR. Rishead-needed in C[R]
<3R. Ris head-needed in C[R].

Thus our computable approximations of the concept of head-needed
redex, such as head spine redex, generalized head spine redex, etc., can be
perceived as strictness analysis.

Berry Sequentiality

At this point it is worthwhile to note that in the pure A-calculus there are
no nontrivial n-ary functions (with n>2) which are strict in all their
arguments. That is, if C[M, L]=C[Ll,M]=L_1 for all M, then the
function associated with this binary context is identically L. This follows
from a theorem of G. Berry (1978) who refers to this fact as the “sequen-
tiality” of A-calculus. It is therefore slightly puzzling that an operator
like + can be defined in A-calculus by a term PLUS such that PLUS
nm — n+ m; apparently the operator 4+ which is strict in both arguments
in some setting (D, F) can only be implemented in A-calculus such that the
dependence on one argument is nonstrict; indeed, the usual definition of
PLUS will be such that PLUS L m= 1, whereas PLUS nl # L. The
“Berry-sequentiality” of A-calculus entails that PLUS reads in and
processes its input in a sequential way.

Of course the concept of strictness depends entirely on what is taken to
be L; a typical example is the following: in Al-calculus with “having no
head-normal form” standing for “undefined” we have, as we just saw, no
binary contexts strict in both “arguments.” However, if we take as notion
of undefined: “having no normal form” (so M — L if M has no nf) then
there are binary functions strict in both arguments; just take the context
Az.z[ ][ 1. (The restriction to Al-calculus is necessary for this example,
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since in A-calculus it is not possible to identify all terms without normal
form.) See the discussion on “undefined” in Barendregt (1977).

The remark above on the nonexistence of binary functions (as given by
contexts) strict in both arguments can be paraphrased in another way. In a
J-term M we can discern the head-needed redexes R, ..., R,. Each redex R,
can be replaced by an arbitrary redex which still is head-needed if the other
redexes are kept the same. So we have determined head-needed “places™;
but the place occupied by R;, while independent of R;, does depend on the
other redexes. In fact, Berry’s sequentiality theorem states that there is no
binary context such that both places are head-needed regardless of the con-
tents; the head-neededness of one place depends on the actual content of
the other place.

Huet-Lévy Sequentiality

The terminology of “needed places” brings us to another concept of
sequentiality, that of Huet and Lévy (1979), which should not be confused
with Berry’s notion of sequentiality. While Berry’s notion refers to the way
in which data are read in and processed in a A-term, regardless of any
“reduction strategy,” the notion of Huet and Lévy says that a sequential
reduction strategy (as opposed to a parallel one) is adequate for reaching
(head) normal forms. This in contrast with some rewriting systems for
which no adequate sequential reduction strategy exists and for which one
must adopt a parallel strategy in order to be sure of finding (head) normal
forms whenever they exist. In the terminology of Huet and Lévy, a rewrite
system is sequential if for every n-ary context C[ ..., ] in normal form and
for every substitution with redexes R; such that the result C[R,,.., R,] has
a normal form, there exists at least one redex R, which is needed. A
shortcoming of this notion is that, in general, it cannot be decided whether
a rewrite system has this property; and second, that even if the rewrite
system has this sequentiality property, such a needed redex cannot always
be indicated in a computable way. Therefore they introduce a stronger
concept: a rewrite system is strongly sequential if for every n-ary context
C[ ..., ]in normal form there exists a needed place, say the ith place. This
means that after filling up the context with redexes R, such that
C[R,,..R,] has a normal form, the ith redex is needed. Clearly,
A-calculus is strongly sequential in this sense: the leftmost place in
C[ ... ] is always needed.

Summarizing. (i) A-calculus is strongly sequential in the sense of Huet
and Lévy;

(i) A-calculus with identification of terms without head-normal form
is sequential in the sense of Berry.
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To see the difference between the two notions even more sharply, one
may consider the extension of A-calculus with an new constant + satisfying
n+m—-ntm, L+n— 1, and n+ L — L. This extension is still strongly
sequential in the sense of Huet and Lévy, but it is not Berry-sequential.
Another extension of A-calculus, with or(T,x)— T, or(x, T)— 7, and
or(F, F) - Fis neither Huet-Lévy-sequential nor Berry-sequential. The first
operator, +, is strict in both arguments, the second, or, is strict in neither
of its arguments.

It is interesting to note that for lambda calculus with or, there
nevertheless exists a strategy which is sequential, in the weak sense that it
chooses a single redex to reduce at each step, without memory of the past
history of the computation (Kennaway, 1987).

Extending Lambda Calculus with Strict Operators

Our algorithms for the determination of sets of needed and head-needed
redexes can easily be extended to extensions of A-calculus with strict
operators such as +. We will show that the algorithms for Sel, and ¢ ,
(see Definition 4.15) can easily be extended to the case where a “demand-
forking™ operator like “+" is present. We will only do this for i= 3.

Consider the extension of A-calculus with a hinary operator +, and
numerals n for each natural number »n. Apart from the p-reduction rule
there are the rules + (n, m) - n+m for all n, m. An expression +(n, m)is a
“+-redex.” Call this extension A*-calculus. An example of a 4A*-term is
(Ax.+ (x, x))3. (Note that +(x, x) is not a redex.)

We have to define what a head-normal form in A *-calculus is: it is a term
such that neither a f-redex nor a +-redex is in “head position.” More
precisely:

5.2. DEFINITION. (i) Let M be a A*-term. A redex R sub M is in head-
position if the leading symbol of R (that is, 4 or +) is only preceded by
occurrences of + or A where the latter are not redex-is. Here the
precedence ordering is as follows: (1) if s, ¢ are symbol occurrences in an
application PQ, s in P and ¢ in Q, then s precedes 7; (2) in + (P, Q) the +
precedes all symbols of P, Q, but there is no relation between s in P and ¢

in Q.

(ii) A i*-term M is a head-normal form if there is no redex R sub M
in head-position.

EXAMPLE. + ((Ax.+(3,2)), 1) is not a head-normal form; /ixy.+
(+(x, +(1, 1)), y) is a head-normal form but not a normal form.

The notion of (head-)needed is analogous to the case without +.
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Now Sely(M), for a A*-term M, is defined as follows. It will be a set of
nonzero natural numbers. First some notation; if X is such a set, then
X——1={nln+1eX}— {0}
X++1={n+1|neX}.
Simultaneously with Sel;(M), we define <M ;.

5.3. DEFINITION. (a)

{(x)3 =X,

{87 =n

(Ax.P), =Ax.{P)s;

(PQYs =(P>Q);, i1 eSely(P),

={(P);1, otherwise;
CH(P, Q)05 = +(KP)5, (0)s)
(b) Sel;(n) = Sel;(x) = &;
Sel;(PQ) =Sely(P)——1;
Sely(Ax.P)  =(Sely(P)++1)u {1}, if xe FV({P);),
=Sel;(P)+ + 1, otherwise;
Sel;(+(P, Q)) =Sel;(P) U Sel;(Q).

(Note that the role of 1 in Definition 4.15 is now played by &).

EXAMPLE. (i) Sely(Axyz. + (z, +(x, 2))) = {1, 3.

(il) (Axpz.+(z, +(x,2)))PQRS Yy = (Axyz.+ (z, +(x, 2))){P),L
(R)sL.

The proof of the following fact follows the same lines as the case without
+, and is omitted.

5.4. THEOREM. All redexes visible in {M Y, where M is a A*-term, are
(head-)needed.

Summary of Results

The Introduction motivated the precise identification of the concept of
needed redex in a lambda term and the requirement for efficient algorithms
which yield approximations to this undecidable notion. Section 3 developed
the main technical results characterising neededness and proving that
quasi-needed reduction sequences are normalising. Section 4 begins the
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work of identifying efficient algorithms for computing neededness. Whether
such algorithms are best employed at compile or run time is very much a
matter for the implementor, and the technology available to him. At the
time of writing he will achieve some benefit from including an algorithm for
detecting neededness in a compiler for a sequential machine. Future
implementors may find it useful to embody algorithms for recognising
needed redexes in hardware. Section 5 illustrates how the approach can be
extended to A-calculus with built-in operators.

APPENDIX: LEvy’s LABELLED LAMBDA CALCULUS

Lévy’s labelled A-calculus is a powerful instrument to trace in a precise
way what happens in a reduction sequence. Many arguments using the ter-
minology of reduction diagrams, residuals of redexes and creation of
redexes as explained in the Introduction can be dealt with in a more suc-
cinct way using Lévy’s labels. In this Appendix we will introduce Lévy’s
labelled A-calculus and use it to obtain some alternative proofs for
propositions in this paper, in particular, those propositions which are
required for a complete proof have very verbose arguments and elaborate
case distinctions, which, therefore, we have only sketched. Besides giving
additional credibility to some of those technical propositions, we feel that
Lévy-labelled A-calculus can play a beneficial role in investigations similar
to the present one. Lévy-labelled A-calculus was introduced in Lévy (1975);
we will present and use the simplified version in Klop (1980) (in Baren-
dregt, 1984, Exercise 14.5.5).

6.1. DEFINITION. (i) Let Ly= {a, b, ¢, ..} be an infinite set of symbols.
The set L of (Lévy) labels is defined inductively by
wel, =welL
w,velL=wvel
wel =wel.

Here wv is the concatenation (without brackets) of the words w and v.
Note that labels may have nested underlinings, as in abcabca.

(i) The set A, of labelled A-terms is inductively defined by
xed,,

M,NeA,=(MN)eAd,,
MeAd, = (Ax.M)eAd,,
Med, =(M")ed,.
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Since the first three clauses generate unlabelled terms, this means that we
have defined terms with partial labellings (i.e., not every subterm bears a
label; equivalently, some subterms may have the “empty label”).
Multiple labellings as in (M")" will be simplified to M"*; this sim-
plification is executed as soon as possible.
(iii) Labelled p-reduction —, (where the subscript L will often be
dropped) is defined by

(Ax.M[x])"N —= (M[(N)"])",

i.e., each occurrence of x in the (labelled) term M(x) is replaced by N*
(note that N may have some labels itself; see example below) and the result
is labelled by w. The label w appearing in this definition is called the degree
of the redex in the LHS. Here is an example of a labelled reduction step,
where we have omitted parentheses as allowed by part (1) of the definition:

((Ax.(x“A)")(Ay. B))* —> ((Ay. B)*“4)".

Note that this step has taken place in the labelled context [ ]¢; and that
substituting (4y.B)* in x“ has yielded (Ay.B)““.

The following fact is proved in Lévy (1975) and Klop (1980).
6.2. THEOREM. Labelled A-calculus is confluent. §

6.3. ExamPLE. Figure 16 shows an elementary reduction diagram of
labelled A-calculus.

Residuals of redexes are defined in the case of labelled reductions just as
in the unlabelled case. We can now state the first benefit of the labelled ver-
sion of reductions: let R in the unlabelled term M be a redex, and suppose
M — N. To determine the residuals of R in N, we attach an atomic label,
say “a,” as the degree of R (that is, R= (Ax.A4)B is replaced by (ix.4)“B).
The result is a (partially) labelled term M’, where I denotes the labelling.
The given reduction M — N can now in the obvious way be “lifted” to the
labelled case; we find a labelled reduction M’ >, N/, where N’ is N

together with a labelling J. Now all redexes R’, R”, ... in N’ with degree “a,”

Oxx® O (Ohy.y)z) ———— Qxx®xD (%)

l

Oy ) D% (Ay.y) )P e (2052 00

FIGURE 16
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are residuals of the original redex R, and they are the only ones. (The proof
is a routine exercise.)

Creation of redexes can also neatly be expressed in the formalism of
labelled reduction. Given an unlabelled reduction step R: M — N and a
redex S of N, we say that S is created by the R-contraction if S is not the
residual of any redex in M. Now if the present reduction step takes place in
the labelled setting: M’ — N7, it turns out that the degree of the created
redex S in N’ contains the underlined degree of the creator redex R as a
subword. We give an example.

6.4. EXAMPLE. (i) M=R=(Jx.x"B)"(Ax.A)" = ((ix.4A)""B)'= S= N.
Indeed the degree wou of the created redex contains the underlined degree v
as a subword.

(11) (/‘V,’C.xu)r( /:)’.A )wB = (/;._V.A )wrurB
(iii)  (Zx.dy.u")'CB— (Ay.C'")'B.

(Essentially these are all “types of creation™ that exist.) Theorem 6.2 can
in fact be strengthened in the same way as for unlabelled reductions, as in
2.35 of the preliminary section: the common reduct can be found by com-
pleting a reduction diagram (now for the labelled case) by adding “elemen-
tary labelled reduction diagrams™ of which one is displayed in Fig. 16. In
such elementary diagrams the redexes contracted in opposite sides have the
same degree; so one might say that degrees propagate without changing in
horizontal and vertical direction, in the construction of a reduction
diagram. Therefore, in a completed composite labelled reduction diagram,
the degrees of the redexes contracted in the top side of the diagram coin-
cide exactly with the degrees of the redexes contracted in the bottom side,
and likewise for left side and right side. Bearing in mind that residuals have
the same degree as their ancestor redex, we have an immediate proof of
Proposition 2.7(ii) in the preliminary section.

Finally, an alternative proof for Proposition 2.7(i) can be obtained easily
using the above mentioned facts for labelled reductions. However, with the
available power of labelled reductions, it is just as easy to skip
Proposition 2.7 and prove Proposition 2.6 directly; 2.6 follows at once from
the following.

6.5. PROPOSITION. Let a reduction as in Fig. 17 be given, such that no
residual of redex R in M is contracted in the reduction #=M — N. Let
redex S in M be created by the step R: M — M'. Then in the projected reduc-
tion AR no residual of S is contracted.

[ L)

Proof. Label M partially by assigning degree “a” to R and degree “b”
to all other redexes in M. Then every redex contracted in the reduction
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t9
)
<

R —

S sub RIR)

FIGURE 17

M —- N has degree containing “b” as its only atomic label. The same
therefore holds true for the projected reduction M’ — N'. This means that
no residual of S is contracted in that reduction, since in the labelled reduc-
tion diagram (obtained by lifting the given reduction diagram starting w'ith
the before mentioned labelling of M) the degree of redex S in M’ contains

an occurrence of the symbol “a.”
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